

- Ideal for 433.92 MHz Transmitters
- Nominal Phase Shift of 180° at Resonance
- Quartz Stability
- Rugged, Hermetic, Low Profile TO-39 Package

SQ433

Absolute Maximum Rating (Ta=25°C)						
Parameter		Rating	Unit			
CW RF Power Dissipation	Р	10	dBm			
DC Voltage	V_{DC}	±30	V			
Operating Temperature Range	T_{A}	-10 ~ +60	°C			
Storage Temperature Range	$T_{ m stg}$	-40 ~ +85	°C			

Electronic Characteristics						
	Parameter	Sym	Minimum	Typical	Maximum	Unit
Frequency (25°C)	Nominal Frequency	$f_{\mathbb{C}}$	NS	433.92	NS	MHz
	Tolerance from 433.92 MHz	Δf_{C}	-	-	± 75	KHz
Insertion Loss		IL	=	6.0	8.0	dB
Quality Factor	Unloaded Q-Value	Q_U	-	13,000	-	-
	50Ω Loaded Q-Value	Q_L	-	6,500	-	-
Temperature Stability	Turnover Temperature	To	25	-	55	°C
	Turnover Frequency	f_{O}	-	fc	-	KHz
	Frequency Temperature Coefficient	FTC	-	-0.032	-	ppm/°C2
Frequency Aging	Absolute Value during the First Year	$ f_A $	-	-	10	ppm/yr
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	ΜΩ
RF Equivalent RLC Model	Motional Resistance	R_{M}	-	99.5	151.0	Ω
	Motional Inductance	L_M	-	475.8685	-	μН
	Motional Capacitance	C_M	-	0.28299	-	fF
	Pin 1 to Pin 2 Static Capacitance	Co	1.6	1.9	2.2	pF

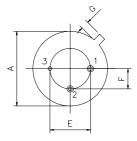
NS = Not Specified

Notes:

- 1. The center frequency, $f_{\text{C}_{\text{I}}}$ is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature $T_C = +25$ °C \pm 2°C.
- 3. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_C, may be calculated from: f = f₀ [1 - FTC (T₀ - T_C)²].
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.

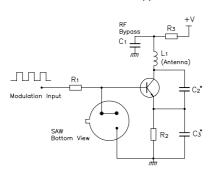
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_0 .
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- For questions on technology, prices and delivery please contact our sales offices or e-mail to sales@vanlong.com.

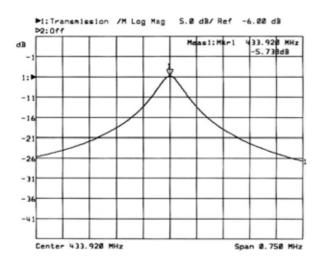
Phone: +86 10 6301 4184 Fax: +86 10 6301 9167


Email: sales@vanlong.com

Web: http://www.vanlong.com

Package Dimensions (TO-39)

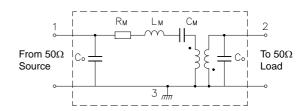

Marking


Ink Marking Color: Black or Blue

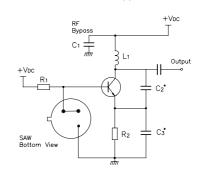
Typical Application Circuit

Low Power Transmitter Application

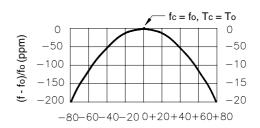
Typical Frequency Response


Electrical Connections

Terminals	Connection		
1	Input/ Output		
2	Output/ Input		
3	Case-Ground		


Package Dimensions

Dimensions	Nom (mm)		
	Min	Max	
Α	9.10	9.50	
В	3.20	3.60	
С	2.80	3.20	
D	Ф0.25	Ф0.65	
E	4.98	5.18	
F	2.54 Nominal		
G	0.4	0.5	


Equivalent LC Model and Test Circuit

Local Oscillator Application

Temperature Characteristics

 $\Delta T = Tc - To (°C)$

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

Phone: +86 10 6301 4184 Fax: +86 10 6301 9167

Email: sales@vanlong.com

Web: http://www.vanlong.com